Просмотр полной версии : Основы психофизиологии под ред. Ю.И. Александрова
серия «ВЫСШЕЕ ОБРАЗОВАНИЕ»
ОСНОВЫ ПСИХОФИЗИОЛОГИИ
(с) http://rudocs.exdat.com/docs/index-16893.html
Ответственный редактор – Ю.И. Александров
Рекомендовано
Министерством общего и профессионального образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по направлению и специальности «Психология», и для постдипломного образования
Москва, ИНФРА-М, 1997
УДК (075.8) 612.821
ББК 28.903:88
075
Авторский коллектив: Ю.И. Александров (отв. редактор), Д.Г. Шевченко (зам. отв. редактора), И.О. Александров, Б.Н. Безденежных, М.В. Бодунов, В.В. Гаврилов, А.Г. Горкин, Т.Н. Греченко, B.C. Гурфинкель, Н.Н. Данилова, Л.Г. Дикая, А.М. Иваницкий, Э.А. Костандов, А.Н. Лебедев, Ю.С. Левик, Н.Е. Максимова, П.В. Симонов, И.А. Шевелев
075 Основы психофизиологии: Учебник / Отв. ред. Ю.И. Александров. - М.: ИНФРА-М, 1997. - 349 с.
ISBN 5-86225-572-9
В учебнике «Основы психофизиологии» раскрыты все темы, составляющие в соответствии с Государственным образовательным стандартом высшего профессионального образования содержание курса по психофизиологии, и дополнительно те вопросы, которые представляют собой «точки роста» и привлекают значительное внимание исследователей. В учебнике описаны основные методологические подходы и методы, разработанные как в отечественной, так и в зарубежной психофизиологии, последние достижения этой науки.
Настоящий учебник, который отражает современное состояние психофизиологии во всей ее полноте, предназначен студентам, аспирантам, научным сотрудникам, а также всем тем, кто интересуется методологией науки, психологией, психофизиологией, нейронауками, методами и результатами объективного изучения психики.
ПРЕДИСЛОВИЕ
По-видимому, все, кто откроет эту книгу, согласятся со следующим высказыванием И.П. Павлова: «В сущности, интересует нас в жизни только одно: наше психическое содержание» [1949, с. 351]. В то же время поддержка выдвинутого еще Аристотелем положения: «Исследование души есть дело естествоиспытателя» [Аристотель, 1937, с. 7], не будет столь же безоговорочной.
Самое общее уточнение могло бы состоять в том, что познание «психического содержания» – дело не только науки, но и других видов человеческой деятельности, таких, например, как искусство или религия. Если же рассмотреть лишь один вид деятельности – науку, то и здесь оказывается, что «психическое содержание» исследуется представителями как естественных, например физиологии, так и общественных наук, к которым принято относить психологию, сочетающую естественнонаучные методы с «герменевтическими» (моделирование в психике исследователя психики испытуемого, зависящее от индивидуально-психологических особенностей исследователя [Дружинин, 1993]).
Контакты между названными науками, которые возникают при решении проблем, представляющих взаимный интерес, часто «искрят» [Швырков, 1995], что вызывает у многих физиологов и психологов желание изолировать свою дисциплину, оградить ее от посторонних посягательств. Однако выдающимся психологам уже давно было очевидно, что предпринимаемые как психологами, так иногда и физиологами попытки эмансипировать психологию от физиологии совершенно неправомерны, поскольку предмет психологии – нейропсихический процесс [Бехтерев, 1991], целостная психофизиологическая реальность [Выготский, 1982], которая лежит в основе всех без исключения психических процессов, включая и самые высшие [Рубинштейн, 1973]. Со стороны психофизиологии также были приведены веские аргументы в пользу того, что самостоятельная, отделенная от психологии физиология не может выдвинуть обоснованной концепции целостной деятельности мозга [Швырков, 1995].
«Изоляция какой-либо дисциплины есть верный показатель ее ненаучности», – справедливо заключает М. Бунге, отвечая на вопрос: «Является ли психология автономной дисциплиной?» Психология же тесно взаимодействует и даже перекрывается с биологией, в частности, с физиологией [Bunge, 1990], причем область их взаимодействия постоянно увеличивается. Логика развития методологии и методов науки, а также «социальные заказы», заставляющие преодолевать междисциплинарные барьеры [Абульханова и др., 1996], определяют возможность и необходимость все большего привлечения методов физиологии для разработки проблем профессионального и психического здоровья, сознания и бессознательного, изучения структуры сложной деятельности человека – совместной, речевой, операторской и мн. др.
Связь и взаимозависимость психологии и физиологии настолько сильны, что позволяют рассматривать их развитие как коэволюцию. Вкратце охарактеризуем этот процесс. Современная психология в значительной степени представлена интуитивной бытовой, или «обыденной психологией» (folk psychology), под которой понимается основанное на здравом смысле, не требующее точных определений понимание психических процессов и состояний [Churchland, 1986]. Дело в том, что такие понятия обыденной психологии, как память, внимание, воля, ум, влечение, чувство и другие не только употребляются в быту для объяснения и предсказания поведения людей, но и влияют на формирование собственно научного знания [Sternberg, 1985; Semin, 1987]. Они используются в психологических исследованиях, как при обосновании проблем исследования, так и при трактовке его результатов. Закономерности и феномены, выявляемые в подобных исследованиях, становятся базой не только для следующих психологических исследований, но и для формулировки задач экспериментов, в которых применяются методы физиологии.
Решение этих задач способствует пересмотру и фрагментации исходных концепций и понятий (сколько, например, разнообразнейших процессов, «систем» и прочего объединяется сейчас термином «память»!), формулировке новых вопросов и т.д. В конце концов в ряде случаев может даже оказаться, что выяснять надо что-то совсем другое. Скажем, современная физиология не исследует, как образуются и движутся «животные духи».
Наряду с обыденной психологией существует и обыденная физиология, которая взаимодействует и с обыденной психологией, и с собственно наукой. Однако здесь мы можем пренебречь самостоятельным значением обыденной физиологии и ограничиться рассмотрением лишь обыденной психологии, полагая, что последняя инкорпорирует ту часть обыденного физиологического знания, которая имеет отношение к интересующему нас проблемному полю.
Следует подчеркнуть, что в процессе коэволюции не происходит «истребления» психологии [Ярошевский, 1996], ее исчезновения, замены физиологией, так как психологическое исследование формирует специфический компонент описания поведения и деятельности, необходимый как для самой психологии, так и для сопредельных дисциплин. Происходит же постепенное замещение бытовых понятий в психологии и физиологии научными. В связи с этим предполагается, что по ходу коэволюции психология и физиология будут все меньше зависеть от обыденной психологии и на определенном этапе замещение завершится [Churchland, 1986]. По-видимому, это предположение полностью справедливо лишь в том случае, если говорить не об обыденной психологии вообще, а о ныне существующей обыденной психологии. В процессе развития на место замещенных придут новые понятия обыденной науки. На чем основано это утверждение?
Еще до возникновения науки, в доисторическую эпоху, представления о психике, или душе, складывались у людей как обобщенные характеристики внешнего поведения, как гипотезы о его детерминантах и механизмах. В связи с этим даже в наиболее примитивных языках имеются обозначения психических свойств и состояний (см. в [Швырков, 1995]). С появлением науки она становится, наряду с религией, искусством, обыденным опытом и т.д., одним из источников концепций, идей и терминов, включающихся в обыденное сознание и формирующих обыденную науку. Люди начинают рассматривать их как само собой разумеющиеся и составляющие «реальность» [Московичи, 1995].
Можно полагать в связи с этим, что обыденная наука продолжит свое существование на всем протяжении процесса коэволюции, осуществляя «обмен» с собственно наукой. Первая будет поставщиком концепций и проблем (конечно, не исключительным – много проблем в собственно науке имеет внутринаучное происхождение) мировоззренческого или практического характера, вторая будет решать эти проблемы и возвращать переработанные концепции, внедрять новые или устранять дискредитированные. При этом количество ассимилированных и преобразованных понятий собственно науки в науке обыденной будет постоянно и быстро увеличиваться, если авторитет науки сохранится и общество не последует антисциентистским рекомендациям, таким, как дополнить отделение государства от церкви отделением его и от науки [Фейрабенд, 1986].
Каково же место психофизиологии, науки, обязанной своим происхождением и даже названием сосуществованию психологии и физиологии и призванной установить между ними связь, в описанной ранее коэволюции? Каков ее специфический вклад? Можно ли свести роль психофизиологии к использованию методов физиологии для изучения психических процессов и состояний? Ответы, которые дают на эти вопросы разные авторы, в том числе и авторы настоящего учебника, значительно различаются.
Известно, что даже физическую систему нельзя описать каким-либо одним теоретическим языком, множественность точек зрения на нее неустранима [Пригожий, Стенгерс, 1986]. Тем более не должно вызывать удивления существование различающихся позиций, разных теоретических языков и школ в психофизиологии, которая, по-видимому, имеет дело с наиболее сложным комплексом проблем, стоящих перед человеком.
(1)
(2)
Упомянутые различия находят свое выражение не только в многообразии ответов на один и тот же вопрос, но и в том, что отдельные вопросы психофизиологии, рассматриваемые одними исследователями как центральные, с других теоретических позиций могут расцениваться как малозначимые или даже неверно поставленные. Поэтому мы полагали, что в учебнике по психофизиологии, написанном одним автором, даже сам набор освещаемых проблем окажется в сильнейшей мере зависимым от взглядов автора. Кроме того, мы учитывали, что психофизиология находится на стыке разных наук: философии, психологии, нейронаук, физиологии, в том числе физиологии высшей нервной деятельности, генетики, биохимии и т.д. Во многом ситуация здесь сходна с имевшей место при подготовке руководства по экспериментальной психологии [I960], в предисловии к которому С.С.Стивенс отмечал, что никто из представителей этой науки не обладает достаточной эрудицией, чтобы справиться с подобной задачей в одиночку.
В связи с уже сказанным мы, считая, что высокое качество всех разделов учебника, а также достаточно полный охват обширного проблемного поля психофизиологии может обеспечить только совместная деятельность коллектива ученых, обладающих взаимно дополняющей квалификацией и представляющих позиции разных научных школ, выбрали коллективный путь его подготовки.
Список глав настоящего учебника включает все пункты Государственного образовательного стандарта высшего профессионального образования (М., 1995), а также дополнительно и те вопросы, которые представляют собой «точки роста», привлекают значительное внимание исследователей и игнорирование которых не позволило бы считать учебник отражающим современное состояние психофизиологии.
В результате содержание учебника соответствует не только Государственному образовательному стандарту высшего профессионального образования, но и Программе по психофизиологии, подготовленной Советом по психологии Объединения государственных университетов Российской Федерации (М., 1996).
Глава 1 подготовлена канд. мед. наук Б.Н. Безденежных (параграф 1) и докт. психол. наук Т.Н. Греченко (параграф 2), главы 2 и 9 – канд. мед. наук Б.Н. Безденежных, главы 3 и 4 – докт. биол. наук, проф. И.А. Шевелевым, глава 5 – докт. мед. наук, акад. B. C. Гурфинкелем и канд. биол. наук Ю.С. Левиком, глава 6 – докт. психол. наук Т.Н. Греченко (параграфы 1–5) и докт. биол. наук, проф. А.Н. Лебедевым (параграфы 6 – 8), глава 7 – докт. мед. наук, акад. П.В. Симоновым, главы 8 и 10 – докт. психол. наук, проф. Н.Н. Даниловой, глава 11 – докт. мед. наук, проф. A.M. Иваницким, глава 12 – докт. мед. наук, проф. Э.А. Костандовым, глава 13 – канд. мед. наук Д.Г. Шевченко (параграф 8 – совместно с докт. психол. наук Ю.И. Александровым), глава 14 – докт. психол. наук Ю.И. Александровым, глава 15 – канд. психол. наук А.Г. Горкиным, глава 16 – канд. психол. наук И.О. Александровым и канд. психол. наук Н.Е. Максимовой, глава 17 – канд. психол. наук М.В. Бодуновым, глава 18 – канд. психол. наук Л.Г. Дикой, глава 19 – канд. психол. наук В.В. Гавриловым.
Настоящий учебник, который отражает современное состояние психофизиологии во всей ее полноте, предназначен студентам, аспирантам, научным сотрудникам, а также всем тем, кто интересуется методологией науки, психологией, психофизиологией, нейронауками, методами и результатами объективного изучения психики.
Доктор психол. наук
Ю.И. Александров
(3)
Глава 6
ПСИХОФИЗИОЛОГИЯ ПАМЯТИ
Научение может быть рассмотрено как последовательность сложных процессов, вовлекаемых в приобретение, хранение и воспроизведение информации (см. гл. 15). В результате научения происходит модификация поведения, а память проявляется как сохранение этой модификации.
Энграмма – след памяти, сформированный в результате обучения.
Описание энграммы может быть выполнено как минимум по трем параметрам: динамике развития процессов, приводящих к становлению следа; параметру состояния энграммы, характеризующему ее готовность к воспроизведению; по устройству энграммы, характеризующему механизмы, которые лежат в основе ее создания.
Эти три разных аспекта описания энграммы составляют основу трех направлений в изучении памяти. Первое исходит из принципа временной организации памяти и описывает динамику формирования энграммы в терминах кратковременного и долговременного хранения; второе, исключая временной компонент создания энграммы, оценивает степень ее готовности к воспроизведению; третье, анализируя нейронные и молекулярные механизмы памяти, может опираться как на принцип временной организации, так и на концепцию состояния энграммы.
1. ВРЕМЕННАЯ ОРГАНИЗАЦИЯ ПАМЯТИ
Временная организация следа памяти подразумевает последовательность развития во времени качественно разных процессов, приводящих к фиксации приобретенного опыта. Основные понятия, которыми оперирует теория консолидации и другие теории, созданные в рамках концепции временной организации памяти, следующие: консолидация – процесс, приводящий к физическому закреплению энграммы, и реверберация – механизм консолидации, основанный на многократном пробегании нервных импульсов по замкнутым цепям нейронов. Длительность консолидации – интервал времени, необходимый для перехода следа памяти из кратковременного хранения, в котором он находится в виде реверберирующей импульсной активности, в долговременное, обеспечивающее длительное существование энграммы.
Основными в концепции временной организации являются понятия о кратковременной и долговременной памяти. Подразумевается, что при фиксации происходит смена одной формы существования энграммы на другую. Представления о кратковременной и долговременной форме существования следа базируется на предположении о разных нейрофизиологических, молекулярных, биохимических и морфофункциональных основах энграммы на разных стадиях ее жизни. Центральной проблемой в концепции временной организации памяти является определение продолжительности периода консолидации энграммы и количества этапов ее становления.
Основной способ исследования временной организации памяти заключается в искусственном воздействии на один из предполагаемых этапов становления энграммы, поэтому такое широкое применение получил метод экспериментальной ретроградной амнезии. Экспериментальная ретроградная амнезия вызывается самыми разными воздействиями. Прошло много времени с тех пор, как К.Р. Дункан [Duncan, 1949] и Р.В. Джерард [Gerard, 1963] впервые сообщили о том, что электросудорожный шок влияет на хранение недавно приобретенного опыта. С тех пор накопленные данные не оставляют сомнения в том, что не только электрошок, приводящий к драматическим последствиям, но и электрическая стимуляция весьма малой интенсивности может влиять на память. Многочисленные экспериментальные данные показывают, что электрическая стимуляция может и усиливать, и прерывать хранение следа.
1.1. Градиент ретроградной амнезии
Зависимость эффективности модуляции памяти от интервала времени между обучением и применением амнестического агента характеризует градиент ретроградной амнезии. Градиент ретроградной амнезии показывает эффективность данного воздействия по отношению к сохранению энграммы. Было установлено, что интервал времени, в течение которого след памяти уязвим для действия амнестических агентов, меняется в зависимости от условий эксперимента и вида используемого воздействия (при одном и том же виде обучения). Нарушение памяти зависит от места приложения стимула, его интенсивности и интервала времени, прошедшего после обучения.
Из исследований градиента ретроградной амнезии можно сделать вывод: эффективность определенного амнестического воздействия изменяется обратно интервалу времени, прошедшего от момента применения данного агента, и прямо пропорционально его силе. Каждый параметр амнестического воздействия и каждый вид амнестических агентов демонстрирует наличие «своего» градиента ретроградной амнезии. Именно поэтому амнестический градиент демонстрирует только уязвимость определенной фазы существования энграммы для характеристик влияющего на память воздействия. Результаты опытов показывают множество амнестических градиентов для одной и той же энграммы.
1.2. Стадии фиксации памяти
Гипотеза о двух последовательно развивающихся следах. Согласно гипотезе, формирование энграммы осуществляется в два этапа: первый характеризуется неустойчивой формой следа и существует в течение непродолжительного периода. Это этап кратковременной памяти. Именно на этом этапе след уязвим для действия модулирующих память влияний. Второй этап – переход следа в устойчивое состояние, которое не изменяется в течение продолжительного периода, – это этап долговременной памяти. Фиксация энграммы осуществляется при помощи процесса консолидации. Консолидация начинает развиваться во время пребывания следа в фазе кратковременного хранения. Последовательная смена состояний следа является необходимым условием для фиксации энграммы. В завершенном виде гипотеза о двух последовательных этапах формирования следа памяти была сформулирована Д.О. Хеббом [Hebb, 1949] и Р.В. Джерардом [Gerard, 1963]. На основе экспериментальных фактов и клинических наблюдений были сформулированы основные положения теории консолидации энграммы.
1. Фиксацию следа памяти обеспечивает процесс консолидации.
2. След памяти тем устойчивее, чем больший интервал времени проходит от момента завершения обучения до момента предъявления амнестического агента.
3. След памяти можно разрушить, если он еще не консолидировался или консолидировался частично.
4. Прерывание процесса консолидации приводит к физическому уничтожению энграммы.
5. Разрушенный след памяти не восстанавливается, так как действие амнестических агентов необратимо.
Гипотеза одного следа и двух процессов.
Эта гипотеза была предложена Дж. Л. Мак-Го и П.Е. Гоулдом [McGaugh, Gold, 1976]. В основе ее лежит предположение о том, что при обучении развиваются два процесса – один из них специфический, инициируемый приобретенным опытом, а другой неспецифический. След памяти нестабилен до тех пор, пока неспецифическая физиологическая активность не закрепит состояние мозга, которое способствует научению и хранению следа. Неспецифические явления, сопровождающие научение и формирование следа, включают изменения уровня бодрствования и уровня определенных гормонов. Особенностью этой модели является отсутствие независимой кратковременной памяти. Согласно гипотезе, то, что обычно называют кратковременной памятью, является особым случаем существования следа, когда действие неспецифического компонента научения ослаблено или заблокировано. Так как проявление энграммы связано с деятельностью многих структур мозга, «чистый след» может оказаться за порогом воспроизведения. Это единственная гипотеза, в которой процесс образования энграммы и ее воспроизведения ставится в зависимость от общего состояния ЦНС. В качестве энграммы в данной гипотезе выступает совокупность явлений, прямо и косвенно участвующих в процессе следообразования, а само следообразование рассматривается как специфический процесс. Остальные процессы, выполняющие регуляторную функцию, рассматриваются как неспецифические.
Гипотеза о трех последовательных этапах фиксации энграммы. Идентификация стадий формирования памяти при действии различных фармакологических средств и ингибиторов синтеза белков привела к предположению о существовании не двух, а трех последовательных этапов в закреплении энграммы. В основе такого «трехкомпонентного» подхода лежат результаты опытов, в которых изучалось действие ингибиторов синтеза белков через разное время после обучения, и предположение о том, что каждая стадия фиксации имеет особое метаболическое обеспечение. Так, например, обнаружено, что интрацеребральное введение хлористого лития или хлористого калия вызывает развитие ретроградной амнезии уже через 5 мин после обучения. В случае введения перед обучением ингибитора Na-, K-AT Фaзы оуабаина амнезия возникает только через 15 мин после обучения. Если применяется ацетоксициклогексимид, то амнезия обнаруживается только через 30 мин после обучения [Gibbs, Ng, 1977]. Авторы сделали вывод о существовании трех стадий развития энграммы. К аналогичному заключению на основании результатов экспериментов о влиянии на научение интрацеребральных инъекций оуабаина и этакриновой кислоты перед выработкой условной пищевой реакции пришел и другой исследователь – М. Марк (см. в [Кругликов, 1994]). Не обучившиеся в течение опытного сеанса цыплята при тестировании через 30 мин – 1 час вели себя так же, как и обученные. Оуабаин и этакриновая кислота не воспрепятствовали формированию следа в долговременной памяти, в то же время полностью исключив реализацию поведения, основанного на кратковременной памяти. Очевидно, что количество фаз фиксации определяется специфичностью применяемых воздействий, что показано в более поздних исследованиях взаимоотношений биохимических процессов, развивающихся при обучении, с динамикой формирования следа памяти.
(4)
2. СОСТОЯНИЯ ЭНГРАММЫ
В опытах были получены факты, которые невозможно объяснить, оставаясь в кругу представлений временной организации памяти – действие амнестических агентов не приводит к физическому уничтожению следов памяти, о чем свидетельствует обнаружение спонтанных восстановлений энграммы (восстановлений специально разработанными методами). Кроме того, продемонстрировано развитие ретроградной амнезии для «старых», заведомо прошедших период консолидации энграмм.
2.1. Спонтанное восстановление памяти
Факты о спонтанном восстановлении памяти после действия амнестического электрошока были известны еще в 50-е гг. (см. в [Греченко, 1979]). Сообщалось о восстановлении навыка после применения электрошока при обучении животных пробегать Т-лабиринт. Восстановление памяти было обнаружено и после применения множественных электрошоков: через 4 дня развивалась ретроградная амнезия, но в следующих проверках, которые выполнялись через 30, 60 и 90 дней после обучения, обнаружено полное восстановление следа памяти. Восстановление следа памяти характеризуется градуальностью. Так, спонтанное восстановление энграммы, сформированной при обучении с одной попытки, наблюдается уже при тестированиях через 3, 48 и 24 ч. Полное восстановление энграммы происходит через 48 ч.
Результаты, полученные многими исследователями, показывают, что динамика восстановления памяти может быть чрезвычайно сложной. Например, при тестированиях состояния памяти через 24, 48 и 72 ч, через 1, 2, 4 и 6 недель восстановление энграммы обнаружено через 48 ч, 1 и 4 недели, а через 24 и 72 ч и 2 и 6 недель показана ретроградная амнезия (каждая группа животных подвергалась тестированию только один раз) (см. в [Греченко, 1979]).
2.2. Восстановление энграммы действием второго электрошока
Многие исследователи сообщили о восстанавливающем действии вторично предъявленной комбинации «наказание (стимул, который применяется при обучении) – электрошок» (см. в [Doty, 1969]). Обнаружено, что если на следующий день после предъявления амнестического агента животному снова повторить эту комбинацию, то произойдет восстановление навыка. Восстанавливающий эффект комбинации «наказание – электрошок» сохраняется даже через 2 недели после развития ретроградной амнезии. Это действие вторично предъявленной комбинации неспецифично по отношению к виду амнестического агента. М. Нечман и P.O. Мейнике показали, что если в качестве амнестического агента использовать двуокись азота, то ее повторное применение в сочетании с отрицательным подкреплением также окажется эффективным для восстановления памяти (см. в [Греченко,1979].
2.3. Восстановление памяти методом напоминания
В работе Р.Дж. Коппенаала и др. [Koppenaal et al., 1967] был впервые применен метод «напоминания». Он заключается в том, что перед тестированием сохранения навыка животным предъявляли электрическое раздражение, сила которого значительно меньше силы «наказания», которое применяли при обучении, и не обладает дополнительным обучающим эффектом. Восстанавливающее действие «напоминания» не зависит от интервала времени между тестированием и предъявлением «напоминания». «Напоминание» обладает специфическим действием в отношении повторной активации энграммы, сформированной в предыдущем обучении, а затем депрессированной электрошоком. Показано, что обстановка, в которой животное находится после эксперимента, может выполнять роль «напоминания». Обнаружено также, что «наказание» и «напоминание» могут иметь разную физическую природу [Греченко, 1979; Кругликов, 1981].
Результаты опытов подтверждают, что электрошок переводит энграмму в латентное состояние. «Напоминание» может выполнять функцию стимула, активирующего энграмму.
2.4. Восстановление памяти методом ознакомления
Если перед обучением животное поместить в экспериментальную камеру и дать возможность свободно передвигаться по ней, то после применения амнестического агента ретроградная амнезия не возникает [Miller et al., 1969]. Опыты показали, что существует оптимальное время пребывания животных в экспериментальной камере до обучения. Это влияние на устойчивость следа памяти получило название эффекта «ознакомления». Применение «ознакомления» в экспериментах по изучению стабильности следа памяти оказалось эффективным способом восстановления энграммы после применения амнестического воздействия и предоставило новые факты, которые не могли получить объяснения с позиций концепции временной организации памяти.
В экспериментах показана эффективность «ознакомления» для задач, мотивированных страхом и голодом. Применение этого метода привело к сокращению времени от момента завершения обучения до применения амнестического электрошока, вызывающего ретроградную амнезию. Оно уменьшилось до 200 мс. Но и при столь малом интервале времени предварительное «ознакомление» животных с экспериментальной камерой приводило к предотвращению нарушения памяти.
Результаты применения специальных методов восстановления памяти, депрессированной применением амнестических агентов, показывают, что ни один из известных в настоящее время агентов не может полностью разрушить однажды сформированный след памяти, а причина ретроградной амнезии заключается в нарушении воспроизведения энграммы.
2.5. Ретроградная амнезия для реактивированных следов памяти
Обнаружено, что после перехода памяти в долговременное хранение можно вызвать ретроградную амнезию. В опытах изучали действие электрошока на навык, сформированный несколько дней назад. Перед применением амнестического воздействия производилась реактивация энграммы – для этого применялось «напоминание» (см. ранее). Тестирование показало развитие ретроградной амнезии для «старого» следа памяти. Результаты экспериментов приводят к предположению о том, что для амнестического воздействия досягаемы следы памяти, находящиеся в момент применения агента в активном состоянии, которое характеризует готовность энграммы к воспроизведению. Развитие ретроградной амнезии повторно активированной энграммы показано во многих работах, выполненных на животных и на людях [Mactatus, 1979]. Следы «старой» памяти, реактивированной экспозицией установки, в которой проводилось обучение, также чувствительны к действию амнестического агента. Новая энграмма депрессируется только действием сильного амнестического агента. Уязвимость следа памяти определяется его состоянием.
2.6. Основное положение теории активной памяти
Основные положения концепции активной памяти заключаются в следующем.
Память выступает как единое свойство, т.е. не существует разделения на кратковременную и долговременную. Временной градиент ухудшения памяти показывает влияние на воспроизведение энграммы. При обучении фиксация памяти происходит во время обучения. Динамика научения отражает и динамику фиксации памяти. Память существует в активной форме, готовой к реализации в данный момент времени, и в пассивной – не готовой к непосредственному воспроизведению. Воспроизведение энграммы, извлеченной из активной памяти, может блокироваться применением амнестического агента. В этом заключается причина ретроградной амнезии. Ретроградная амнезия возникает только для энграмм, находящихся в активном состоянии в момент применения амнестического агента. Активная память – совокупность активных энграмм. О состоянии энграммы можно судить только по результатам воспроизведения. Активная энграмма существует на уровне электрической активности нейронов (доказательством являются опыты по ретроградной амнезии – страдает след памяти, только что сформированный или реактивированный и потому имеющий электрофизиологический эквивалент). Электрошок изменяет электрическую активность нервных клеток, и воспроизведение энграммы по этой причине становится невозможным. В опытах на отдельных нейронах показано, что электрошок приводит к нарушениям процессов электрогенеза и потере химической чувствительности, что вызывает нарушение функции коммуникации между нейронами. Электрошок не только дезорганизует паттернизированную электрическую активность – он нарушает функциональную целостность электровозбудимой мембраны. Следует отметить, что изменения активности нейронов носят временный характер. После восстановления нормальной электрической активности нейронов происходит и восстановление памяти. Для воспроизведения энграммы нужна нормальная электрическая активность. После применения амнестических агентов след памяти не воспроизводится, потому что нарушены средства его выражения – электрические процессы определенных нейронов, участвующих в воспроизведении энграммы.
^ Организация активной памяти. Вся память рассматривается как постоянная и долговременная. Некоторая часть долговременной памяти становится активной в требуемый ситуацией момент времени. Другая ее часть находится в латентном или неактивном состоянии и потому является недоступной для реализации. В зависимости от условий формирования энграммы новые следы памяти могут поступать в хранение в активном или неактивном состоянии (см. ранее). Активная энграмма – след памяти, находящийся в состоянии, готовом для реализации в поведении и существующий на уровне электрической активности определенных нервных элементов. Часть энграмм в требуемые ситуацией моменты времени реактивируется и переходит в активное состояние, доступное для актуализации. Реактивация может происходить как спонтанно, так и под влиянием различных внутренних и внешних факторов. О состоянии энграммы можно судить только по результатам тестирования.
(5)
Долговременная память организована в систему, в которой вновь приобретенный опыт занимает определенное место. Память усиливается и дополняется в течение всей жизни. Если новая энграмма вошла в систему памяти, то для ее актуализации достаточно не только ее непосредственной активации, но и активации через «подсказку». Память проявляется в возможности модифицировать поведение в зависимости от прошлого и настоящего опыта. Всякий раз повторно активированная энграмма отличается от нее самой, воспроизведенной на другом отрезке времени в прошлом (см. гл.14).
Концепция состояний памяти свободна от условного деления на кратковременную и долговременную и потому может объяснять феномены, которые остаются непонятными с точки зрения временного подхода к организации памяти. То, что принято называть кратковременной памятью, является активной частью памяти, в которой в определенных ситуациях доминирует вновь приобретенный опыт. Именно поэтому законы, сформулированные исследователями для кратковременной памяти, остаются справедливыми, так как они характеризуют новую часть активной памяти.
3. ГИПОТЕЗА О РАСПРЕДЕЛЕННОСТИ ЭНГРАММЫ
Опыты с локальными раздражениями мозга показали, что развитие ретроградной амнезии при стимуляции определенной структуры зависит от интервала времени, прошедшего от момента завершения обучения до применения амнестического агента. Разные участки мозга эффективны для нарушения памяти через разное время. Обнаружено перемещение таких критических точек по структурам мозга и по ядрам одной структуры. Возникает предположение о том, что след памяти через разное время реализуется разными нейронами. «Плавание» энграммы по структурам мозга отражает принцип организации памяти.
3.1. Распределенность энграммы в опытах с локальными раздражениями мозга
Исследования, выполненные с использованием электрошоков, которые вызывают развитие электрической судорожной активности, показывают сложную динамику перемещений активной энграммы по структурам мозга. Для понимания механизмов формирования следа памяти большое значение имеет локальное электрическое раздражение определенных структур, которое позволяет получить модуляцию памяти при низких интенсивностях электрического раздражения. Регистрация электрической активности показывает, что действие таких токов затрагивает только активность нейронов, расположенных в непосредственной близости от стимулирующих электродов. Такой метод наиболее перспективен для получения знаний о нейроанатомической локализации энграммы.
Эффективность электрического раздражения одной и той же структуры мозга изменяется в зависимости от интервала времени, прошедшего после обучения [McGaugh, Gold, 1976]. В то же время через разное время после обучения критичной для нарушения памяти становится стимуляция разных структур мозга. Было выдвинуто предположение о существовании специальных нейронных систем, обеспечивающих кратковременную и долговременную память. Для идентификации таких нейронных систем были использованы локальные раздражения разных структур головного мозга: ретикулярной формации среднего мозга, гиппокампа и миндалины [Kesner, Conner, 1972, 1974; Wilburn, Kesner, 1972; McGaugh, Gold, 1976]. Стимуляция токами малой силы гиппокампа, миндалины, срединного центра у кошек или хвостатого ядра у крыс прерывает долговременную память для задач, пассивного избегания (имеются в виду энграммы, сформированные за несколько часов до электрической стимуляции). Раздражение ретикулярной формации приводит к нарушению кратковременной памяти, хвостатого ядра – кратковременной и долговременной, миндалины и гиппокампа – долговременной. Предполагается, что кратковременная и долговременная память развиваются параллельно и обеспечиваются разными нейронными системами.
В опытах с экстирпациями различных участков мозга было показано участие разных областей в кратковременной памяти. «Хотя наиболее отчетливые и стойкие нарушения поведения животных были связаны с разрушением префронтального неокортекса, тем не менее эффективными оказались и повреждения таких структур, как хвостатое ядро и другие базальные ядра, гиппокамп, септум, ядра таламуса, височная кора, ретикулярная формация среднего мозга. Использование методов электростимуляции подтвердило эти данные и позволило обнаружить ряд новых фактов, которые принципиально не могли быть получены путем разрушений или охлаждения мозговых образований. Выяснилось, что эффективность изолированного раздражения исследуемой зоны мозга (в смысле ухудшения правильности выполнения животным отсроченной задачи) различна в зависимости от того, в какой момент отсрочки производится раздражение» [Мордвинов, 1982, с. 169]. Функциональное значение одной и той же структуры мозга изменяется в различные моменты времени. Эти изменения говорят о существовании временного паттерна взаимодействий между отдельными структурами мозга, о подвижности самого мнестического процесса и о критической необходимости участия определенной структуры в различные моменты реализации энграммы в зависимости от интервала времени после обучения.
Удаляя определенные участки мозга, исследователи пытались понять, насколько они необходимы для процессов обучения и памяти. Оказалось, что даже при экстирпации значительных участков мозга обучение происходило, а память нарушалась относительно мало [Лешли, 1933; Беленков, 1980; Мордвинов, 1982]. Именно поэтому К.С. Лешли пришел к выводу о том, что «памяти нигде нет, но в то же время она всюду». Экстирпации, выполняемые в лабораторных условиях на животных и в клинике во время нейрохирургических операций на мозге человека, предоставили много фактов, говорящих о том, что удаление определенных областей мозга специфически влияет как на состояние «старых» энграмм, так и на способности к приобретению «новых».
3.2. Распределенность энграммы по множеству элементов мозга
Представление о том, что след памяти не имеет определенной локализации, а считывается с нейронов разных структур мозга в зависимости от обстоятельств, подтверждено экспериментами. Факты, полученные в опытах, указывают на принцип распределенности энграммы как основу организации памяти. Анализ экспериментальных данных дает возможность говорить не об единственном пункте локализации памяти, а об определенном множестве таких мест, размещенных по различным структурам мозга. Полученные факты демонстрируют изменчивость их пространственного расположения. При выполнении животными отсроченной задачи происходит перемещение функционально активных пунктов (локусов) мозга, содержащих критичные для реализации энграммы нервные клетки [Мордвинов, 1982]. А. Дж. Флекснер предполагал, что энграмма распространяется по структурам мозга, когда след памяти «стареет» [Deutsch, 1969]. Конфигурация ансамбля активно действующих локусов не остается застывшей, а изменяет пространственную структуру в зависимости от потребностей регуляции целостного поведения в данный отрезок времени. Это дает основание для принятия принципа динамичности в организации морфофункциональной системы обеспечения процессов кратковременной памяти.
Принцип динамичности предполагает нестабильность самой системы во времени. Нестабильность определяется текущими изменениями функциональной значимости образующих систему мозговых структур в ходе реализации энграммы. Топография системы, обеспечивающей воспроизведение, меняется от момента к моменту. Мы предполагаем, что эти изменения связаны с достижением максимума активности энграммами иных элементов, расположенных в других структурах. Постоянная смена активностей следа памяти на разных элементах системы является причиной постоянного «блуждания» активных мнестических центов.
^ Нейрофизиологические исследования распределенности энграммы. В опытах на изолированных нейронах виноградной улитки обнаружены клетки, у которых формирование следа памяти происходит во время ассоциативного обучения, так что после определенного числа сочетаний условного и безусловного стимула формируется энграмма, достигающая уровня актуализации по электрофизиологическим показателям (рис. 6.1). Количество таких нейронов относительно невелико – менее 15% от общего количества зарегистрированных в ситуации ассоциативного обучения (687 нейронов). Более 80% клеток продемонстрировали феномен отсроченного обучения – он заключался в том, что во время предъявления ассоциированных стимулов ответ на «условный» стимул или не изменялся, или же ухудшался при любой частоте предъявления пары. Основная особенность заключалась в том, что увеличение ответа на «условный» стимул после обучения развивалось постепенно (рис. 6.2). [Grechenko, 1993]. Достижение максимальной величины ответа, которая зависит от количества предъявленных сочетаний и от количества проведенных циклов обучения, у разных клеток происходит через неодинаковое время. После выполнения первой серии, состоявшей из предъявления 15–20 пар ассоциированных стимулов, время достижения максимальной величины ответа на условный стимул составляло от 5 до 40 мин (см, рис. 6.2). Опыты на идентифицированных нейронах показали, что независимо от вида ассоциируемых стимулов и от особенностей предъявления сочетаний данный конкретный нейрон всегда обучается по одному и тому же способу – или во время обучения, или отсроченно. Это качество является его индивидуальной характеристикой в отношении данного вида обучения. (В опытах использовали ассоциации стимулов, адресованных различным структурам клетки, – два внутриклеточных деполяризационных стимула, активирующих пейсмекерный механизм, или электровозбудимые мембраны и две микроаппликации медиатора, или микроаппликацию медиатора в комбинации с электрическим стимулом.) По-видимому, в основе этого феномена лежат особенности внутриклеточных процессов, опосредующих ассоциативное обучение, и эти процессы различны по скорости своего развития.
(6)
745
Рис. 6.1. Формирование условного ответа при сочетании микроаппликации ацетилхолина (АХ) с электрическим деполяризационным импульсом тока (0,36 нА, 100 мс):
а– исходный ответ на микроаппликацию АХ (УС) в локус 1; б – ответ нейрона на деполяризационный стимул, используемый в качестве подкрепления (БС). Сила тока 0,36 нА, длительность 100 мс; в – сочетание АХ и БС, интервал от начало микроаппликации до начала действия БС 50 мс, частота предъявления сочетаний 1 раз в 2–3 мин; Г– ответ нейрона на изолированное предъявление АХ после 8 сочетаний УС–БС; Д – ответ нейрона после 12 сочетаний; е – ответ нейрона на АХ после 20 сочетаний; ж, з – ответ нейрона через соответственно 5 и 25 мин после предъявления 20 сочетаний; н – ответ нейрона на микроаппликацию АХ в локус 2 (ответ получен до проведения обучения в локусе 1); к– ответ нейрона на АХ после 8 сочетаний УС–БС во второй серии; л– ответ нейрона на АХ в локусе 1 после 20 сочетаний во второй серии; м, н – ответ нейрона на АХ через соответственно 30 и 40 мин после обучения; о – ответ нейрона на АХ в локусе 2 после достижения максимального ответа в локусе 1(л). Калибровка: 10 мВ, 1 с
Время сохранения следа памяти в состоянии наивысшей активности на изолированных нейронах не слишком велико – так, после выполнения первой серии обучения у клеток, обучающихся во время предъявления ассоциированных стимулов, оно не превышает 20 мин, а у отсроченно обучающихся нейронов – 40 мин. Время достижения максимума ответа после выполнения второй и последующих серий обучения изменяется. У нейронов первой группы все события развиваются традиционно – при выполнении каждой следующей серии требуется все меньшее количество ассоциированных стимулов, а время сохранения следа на максимальном уровне актуализации увеличивается (после выполнения 2–4 серий оно может достигать 90 мин). У нейронов же второй группы выполнение каждой следующей серии значительно продлевает время «жизни» следа – после второй серии оно может увеличиться в 2 раза – и, как ни удивительно, увеличивает время достижения максимальной активности следа памяти. Например, если след после первой серии обучения достигал наиболее высокого уровня актуализации через 10 мин, то после второй или третьей серии – только через 30–40 мин. Кажется вероятным, что такие характеристики пластичности нейронов могут лежать в основе распределенности энграммы по популяции клеток, опосредующих конкретную форму поведения. Воспроизведение следа памяти через разное время после обучения происходит с различных нейронов, отличающихся временными характеристиками достижения максимальной активности, инициированной обучением.
746
Рис. 6.2. Отсроченное обучение на нейроне ЛПаЗ при сочетании микроаппликаций АХ с электрическим деполяризационным стимулом, вызывающим генерацию ПД:
а – исходный ответ нейрона на микроаппликацию АХ (1), ответ на АХ при повторных микроаппликациях на 10-е и 30-е применение. Частота микроаппликаций 1 раз в 2–3 мин; б – ответ нейрона при повторных предъявлениях БС с частотой 1 раз в 2–3 мин. Сила стимула 2,5 нА, длительность 100 мс: показан ответ нейрона на 1-е и на 30-е предъявление; в – формирование условного ответа при сочетании АХ с электрическим предъявлением. Интервал между УС и БС равен 10 мс: 1 – ответ нейрона на первое сочетание УС–БС; 20 – на 20-е предъявление УС–БС; Y1 – ответ нейрона на АХ через 3 мин после 20 сочетаний; У2 У3 У4, У5 У6 Уz - ответ нейрона через 10, 30, 40, 90, 120 и 150 мин после пятой серии сочетаний соответственно. Калибровка: 10 мВ, 1 с
Факты, полученные в опытах на изолированных нейронах, совпадают по существу с данными экспериментов, проведенных на полуинтактном препарате улитки [Максимова, Балабан, 1983]. В частности, для командного идентифицированного нейрона ЛПаЗ в этих опытах получили весьма похожие временные параметры актуализации активной энграммы – около 90 мин после выполнения трех серий предъявлений ассоциированных стимулов. (В опытах изучали условную пассивно-оборонительную реакцию.) Так как на поведенческом уровне этот условный ответ обнаруживается непосредственно после обучения, то, следовательно, он осуществляется ансамблем нервных клеток, в котором не участвует командный нейрон ЛПаЗ (его энграмма актуализируется отсроченно). Это наблюдение заставляет предполагать, что в зависимости от времени, прошедшего после обучения, реализацию следа памяти осуществляют разные по своему составу нейронные ансамбли. Изменение элементов системы обеспечивает функциональную неоднородность энграммы, воспроизводимой через разное время после обучения.
(7)
4. ПРОЦЕДУРНАЯ И ДЕКЛАРАТИВНАЯ ПАМЯТЬ
В последнее время стало приобретать все большее значение представление о множественности систем памяти. Это представление сформировалось на основе данных, полученных при исследовании больных с различными поражениями мозга, а также в опытах на здоровых испытуемых, выполненных с использованием регистрации вызванных потенциалов, и в опытах на животных с различными повреждениями мозговых структур.
Эти системы памяти имеют разные оперативные характеристики, участвуют в приобретении знаний разного рода и осуществляются разными мозговыми структурами. Исследователи предположили, что переработка по крайней мере двух видов информации ведется в мозгу раздельно и каждый из этих видов хранится также отдельно [Squire, 1994]. Упомянутые ранее данные, полученные как на амнезированных пациентах, так и на людях с обычной памятью и на животных, позволили разделить системы памяти на две большие группы; процедурную и декларативную память.
^ Процедурная память – это знание того, как нужно действовать. Процедурная память, вероятно, развивается в ходе эволюции раньше, чем декларативная. Привыкание и классическое обусловливание – это примеры приобретения процедурной памяти. Процедурная память основана на биохимических и биофизических изменениях, происходящих только в тех нервных сетях, которые непосредственно участвуют в усвоенных действиях.
^ Декларативная память обеспечивает ясный и доступный отчет о прошлом индивидуальном опыте. В отличие от имплицитной процедурной памяти, она является эксплицитной, сознательной. Память на события и факты включает запоминание слов, лиц и т.д. Содержание декларативной памяти может быть декларировано. Она зависит от интеграции в мозговых структурах и связей с медиальной височной корой и диэнцефалоном, повреждение которых становится причиной ее нарушения. Организация декларативной памяти требует переработки информации в височных долях мозга и таламусе. Структурой, важной для декларативной памяти, является гиппокамп (включая собственно гиппокамп и зубчатую извилину, субикулярный комплекс и энторинальную кору) вместе с парагиппокампальной корой. Внутри диэнцефалона важные для декларативной памяти структуры и связи включают медиодорзальные ядра таламуса, передние ядра, маммилоталамический тракт и внутреннюю медуллярную пластинку.
В то время как декларативная память относится к биологически значимым категориям памяти, зависящим от специфических мозговых систем, недекларативная память охватывает несколько видов памяти и зависит от множества структур мозга.
5. МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ ПАМЯТИ
В нейронауках исследование механизмов научения и памяти ведется преимущественно в контексте пластичности (см. гл. 15). Именно поэтому многие исследования имели своей целью идентификацию пластических изменений активности и морфологии мозга во время обучения и запоминания. Так как пластичность стала доступной для исследований на клеточном и молекулярном уровнях, в настоящее время идентифицировано множество механизмов нейронной пластичности, которые, как предполагается, вносят свой вклад в разные формы обучения.
Обычно в качестве основного изменения при формировании памяти рассматривают модификацию синаптических связей. Эта идея была разработана до теории клеточных ансамблей Д.О. Хеббом [Hebb, 1949]. Интересы современных исследователей направлены не только на синапсы, но и на внутриклеточные процессы. Эксперименты, в которых изучаются механизмы долговременной пластичности, показывают, что по нейрофизиологическим показателям «старые» и «новые» следы памяти неразличимы, а качественно электрическая активность нейронов одинакова. Выдвигается предположение, согласно которому в основе длительно сохраняющихся следов памяти лежат долговременные изменения хемореактивных свойств мембраны нейронов. Это предположение поддерживается результатами экспериментов, в которых осуществляется прямой контроль за состоянием хемочувствительной мембраны на разных этапах ее формирования и последующего сохранения во времени [Schwartz et al., 1971; Соколов, Тер-Маргарян, 1984]. Полученные факты позволяют рассматривать длительно сохраняющиеся изменения хемочувствительных мембран нейронов в качестве одного из реальных механизмов, лежащих в основе сохранения энграмм.
По этой причине в современных исследованиях одно из наиболее разрабатываемых направлений – это изучение структуры и функции синаптических мембран и их роли в передаче, фиксировании и хранении информации. Мембрана может рассматриваться как двойной посредник в передаче информации: состояние мембраны определяет чувствительность к стимулу, а перестройка мембраны после получения сигнала определяет силу, специфичность и адекватность ответа. Исключительная роль мембран в передаче и хранении информации связана с кооперативными структурными переходами в них. Эти переходы могут индуцироваться изменениями в липидах и белках [Бурлакова, 1990]. Не только кратковременная, но и долговременная память связана с изменением структуры липидного бислоя синаптических мембран. И кратковременная, и долговременная память зависят от перехода липидов в одно и то же новое жидкокристаллическое состояние (Крепс, Ашмарин, 1982).
Современный уровень понимания природы синаптической пластичности и эндонейрональных процессов позволяет успешно изучать целенаправленное воздействие на метаболические процессы нервных клеток, обеспечивающие привыкание, ассоциативное обучение, долговременную потенциацию, длительно сохраняющееся изменение синаптической эффективности и другие разнообразные формы пластичности нервных клеток [Салганик и др., 1981; Lynch, Baudry, 1984; Bliss et al., 1986]. Наиболее интересные результаты получают в опытах по изучению пластичности и ее изменений под влиянием высокоспециализированных веществ при регистрации электрической активности нейронов [Костюк и др., 1984; Цитоловский, 1986; Belardetti et al., 1986]. Идентификация тонких внутриклеточных биохимических механизмов научения позволила понять особую роль ионов кальция. По предположению кальций осуществляет взаимосвязь между метаболизмом нейрона и его мембраной, являясь метаболически зависимым компонентом клеточной проводимости; он принимает непосредственное участие в формировании пластических реакций нейронов.
^
Powered by vBulletin® Version 4.1.7 Copyright © 2024 vBulletin Solutions, Inc. All rights reserved. Перевод: zCarot